Myasthenia Gravis
Diagnosis and management

Dr. Thanin Asawavichienjinda, M.D.
Myasthenia Gravis

- A neuromuscular disorder characterized by weakness and fatigability of skeletal muscles
- The underlying defect: A decrease in the number of available acetylcholine receptors (AChRs) at neuromuscular junctions due to an antibody-mediated autoimmune attack.
- Preferable name: Autoimmune myasthenia
- Treatment now available for MG is highly effective, although a specific cure has remained elusive

Harrison 2001
Myasthenia Gravis: Epidemiology

- In the USA, the prevalence is 14.2 cases/1 million people
- Appear at any age
- In women, the onset between 20 and 40 years of age
- Among men, at 40-60
- Overall, women are affected more frequently than men, in a ratio of approximately 3:2.
- Familial occurrence is rare
Myasthenia Gravis: Epidemiology

- **Annual incidence:** 0.25-2/100,000
- **Spontaneous remission:** 20%
- **Without treatment, 20-30% die in 10 years**
- **MG is a heterogeneous disorder**
 - 90% no specific cause
 - Genetic predisposing factor: HLA association; HLA-BW46 in Chinese ocular MG
 - Thymic tumor: 10%

Lancet 2001
Myasthenia Gravis: Pathophysiology

- Autoimmune response mediated by specific anti-AChR antibodies
- Pathogenic antibodies are IgG and are T cell dependent, Sensitized T-helper cells
- Autoimmune response, the thymus appears to play a role
- 75%: thymus abnormal
 - 65%: hyperplasia
 - 10%: thymoma, rarely in children; often (20%) in patients aged 30-40 years

NEJM 1994; Neurologic clinics 1994; BJA 2002; JOAO 2004
Myasthenia Gravis: Pathophysiology

- Postsynaptic nicotinic acetylcholine receptor: reduce the number of functional receptors
 - loss of structural integrity of receptors: by Ab and complement
 - Morphologic changes of simplification of the pattern of postsynaptic membrane folding:
 - An increased gap between the nerve terminal and the post synaptic muscle membrane
 - Blockade
 - ↑ Turnover of AchRs: Accelerated degradation of acetylcholine receptors

NEJM 1994, 1997; Neurologic clinics 1997; BJA 2002; JOAO 2004
Myasthenia Gravis: Pathophysiology

- Reduced AchR density
 - results in end-plate potentials of diminished amplitude which fail to trigger action potentials in some fibers causing a failure in initiation of muscle fibre contraction - power of the whole muscle is reduced

- The amount of ACh released per impulse normally declines on repeated activity (termed presynaptic rundown)
Myasthenia Gravis: Clinical Features

- Fluctuating weakness of voluntary muscles (fatigability)
 - Worsen after exertion and improve with rest
- No abnormality of cognition, sensory function, or autonomic function
Myasthenia Gravis: Clinical Features

• Initial symptoms involve the ocular muscles in 60%
• All patients will have ocular involvement within 2 years of disease onset
Myasthenia Gravis: Clinical Features

• **Ocular manifestations**
 - Ptosis, uni- or bilateral is very common and may occur while patients reading, or during long period of driving
Ptosis
Ptosis and impaired orbicularis oculi
Myasthenia Gravis: Clinical Features

• **Ocular manifestations**
 - Diplopia: Extraocular muscle weakness may also present asymmetrically
EOM
Myasthenia Gravis: Clinical Features

• **Bulbar involvements**
 - Difficulty chewing, speaking, or swallowing: initial symptoms in 17% of patients
 • Fatigability and weakness during mastication
 • Unable to keep jaw closed after chewing
 • Slurred and nasal speech
Nasal voice
Myasthenia Gravis: Clinical Features

• **Limb muscles weakness:**
 - Initial symptoms in fewer than 10%
 - Upper extremities weakness is more common than lower extremities, asymmetrical
 - Involve proximal muscles than distal
 - Involve neck muscles: neck flexion weaker than neck extension
Myasthenia Gravis: Clinical Features

• Respiratory insufficiency
 - The initial presentation is rare
 - Occurring precipitously in a patient with recent worsening of symptoms
Myasthenia Gravis:

- Precipitating events
 - Systemic illness
 - Viral upper respiratory tract infection
 - Receiving general anesthesia
 - Receiving neuromuscular blocking agents
 - Pregnancy, menstrual cycle
 - Extreme heat
 - Stress
Medications induce or exacerbate MG

- **Definite association**
 - Penicillamine, corticosteroids

- **Probable association**
 - Anticonvulsants (phenytoin);
 - Anti-infectives (aminoglycosides, ciprofloxacin);
 - Beta-adrenergic receptor-blocking drugs;
 - Lithium carbonate;
 - Procainamide HCl
Medications induce or exacerbate MG

- Possible association
 - Anticholinergic drugs (artane);
 - Anti-infectives (ampicillin, imipenem, erythromycin, pyrantel);
 - Cardiovascular drugs (propafenone HCl, verapamil);
 - Cholroquine phosphate;
 - Neuromuscular-blocking drugs (vecuronium, succinylcholine);
 - Ocular drugs (proparacaine HCl, tropicamide);
 - Miscellaneous drugs (acetazolamide, carnitine, interferon alfa, transdermal nicotine)
MG: Classification

- **Osserman Classification**

 Grade I: involve focal disease (restricted to ocular muscle)

 Grade II: generalized disease

 IIa: mild

 IIb: moderate

 Grade III: severe generalized disease

 Grade IV: a crisis with life-threatening impairment of respiration

NEJM 1994
MG: Classification

- MG Foundation of America Clinical Classification

Grade I: Any ocular muscle weakness

Grade II: Mild weakness affecting other than ocular muscles
 - IIa: limb and/or axial weakness; less oropharyngeal involvement
 - IIb: oropharyngeal and/or respiratory weakness

Grade III: Moderate weakness affecting other than ocular muscles (a,b)

Grade IV: Severe weakness affecting other than ocular muscles (a,b)

Grade V: Defined by tracheal intubation

BMC musculoskeletal disorders 2004
Myasthenia Gravis: Clinical Features

• Clinical course
 – Most progress if no treatment
 – 66%: maximum weakness during the first year
 – Spontaneous improvement occurs early in the course
• Ocular type
 • 66% develop generalized disease in one year
 • 14% not progress after 2 years

Neurologic clinics 1997
Myasthenia Gravis: Clinical Features

• Clinical course
 - Active stage (5-7 y): fluctuation and progression for several years: thymectomy benefit
 - Inactive stage (10 y): fluctuation while intercurrent illness or other identifiable factors (drugs, pregnancy): thymectomy no benefit
 - Burnt-out stage: after 15-20 years; fixed weakness with atrophic muscles

Neurologic clinics 1997
Myasthenia Gravis: Diagnosis

• Clinical manifestations: chronic intermittent muscle weakness; fatigability

• Provocative test:
 – Physiologic:
 • Look up for several minutes; counting aloud to 100; repetitively testing the proximal muscles
 – Pharmacologic:
 • Curare test: to demonstrate generalized MG

(Neurologic clinics 1994)
Enhanced ptosis
Provocative test
Myasthenia Gravis: Diagnosis

• Pharmacological tests
Myasthenia Gravis: Diagnosis

• Tensilon test:
 - Using edrophonium chloride: short acting acetylcholinesterase inhibitor
 - 10 mg of edrophonium (0.15-0.2 mg/kg) used
 - A small test dose (2 mg) iv; after 1 min. no improvement and side effect, the remainder given slowly
 - The effect of edrophonium: in 30 sec. and last fewer than 10 min.
Myasthenia Gravis: Diagnosis

• Tensilon test:
 - Having false positive (LEMS, MND, MS, tumor, DM cranial neuropathy, mitochondrial myopathy) and false negative
 - Side effects: N/V, tearing, salivation, muscle fasciculation, abdominal cramp, bronchospasm, bradycardia, cardiac arrest
 - Cardiac monitoring
 - Atropine available: 0.6 mg IV
Myasthenia Gravis: Diagnosis

- Neostigmine test
 - Longer acting
 - 1.5 mg IM or 0.5 mg IV
 - Action begins in 15-30 mins and lasts up to 3 hours

Neurologic clinics 1997
Myasthenia Gravis: Diagnosis

- Electrophysiological tests
Myasthenia Gravis: Diagnosis

• Repetitive nerve stimulation
 - 3 Hz is used for 60 sec.
 - A greater than 15% decrement of the amplitude of CMAP is considered positive
 - The yield of the test increases if proximal nerves are stimulated
 - May be abnormal in ALS, peripheral neuropathy, radiculopathy, MS

Neurologic clinic 1997; JOAO 2004
Myasthenia Gravis: Diagnosis

- **SFEMG**
 - Signals are recorded only from muscle fibers close to the recording surface of the needle electrode
 - *Measure the relative firing (action potentials)* of adjacent muscle fibers from the same motor unit during voluntary activity
 - The variation (time) in firing between these firing is called jitter (µsec)
Myasthenia Gravis: Diagnosis

• SFEMG
 - Normal jitter ranges from 10-50 μsec
 - Increased jitter is seen in MG (100 μsec or greater)
 - Neuromuscular block occurs as end-plate potentials fail to reach adequate threshold to generate action potential
 - Time for end-plate potential to reach the threshold for action potential generation is longer
Myasthenia Gravis: Diagnosis

- **SFEMG**
 - Most sensitive
 - Difficult to perform
 - Need experience of the EMGer
Myasthenia Gravis: Diagnosis

• SFEMG
 – May be abnormal (F+) in neuropathies, mitochondrial myopathies, nerve injury, anterior horn cell disorders
 – May have false negatives in mild affected, or on immunosuppressive treatment
Myasthenia Gravis: Diagnosis

• Immunological tests
Myasthenia Gravis: Diagnosis

- Antibody to acetylcholine receptor
 - Present in almost all patients with thymoma
 - Absent in ocular type
 - Absent in 20% of generalized MG

JOAO 2004
Myasthenia Gravis: Diagnosis

- Sleep test and rest test
 - Rest test for ocular (ptosis) type (AAO 2002)
Myasthenia Gravis: Diagnosis

• **Ice test**
 - Muscles in MG function better in a lower temperature
 • Decreased acetylcholinesterase activity
 • Increased depolarizing effect of acetylcholine at motor endplates
 - Applying ice pack on the eyelid during closing for 2 mins.
 - Positive: lid fissure increases by 2 mm or more from baseline *(Curr Opin Neurol 2001)*
Before ice test

After ice test

ice test

rest test
Myasthenia Gravis: Diagnosis

Ocular MG
- Tensilon test
- RNS (EOM)
- AchR-Ab:
- SFEMG (gold standard)
 (orbicularis oculi and frontalis)
- Sleep test simple and safe but takes time (30 mins.) and place
- Rest test
- Ice test for ptosis:

Sensitive
- 86% (F+) (side effect)
- 48% (F+) (invasive)
- 45-65% (rare F+) (expensive)
- 95% (F+) (pain)
- 50% no F+ (AAO 2000)
- 95% no F+ (Curr Opin Neurol 2001)

Neurologic clinics 1997; J med Assoc Thai 2001; JOAO 2004
Myasthenia Gravis: Diagnosis

Generalized MG
- Tensilon test
- RNS
- AchR-Ab:
- SFEMG

Sensitive
- 95
- higher than in ocular MG (F+)
- 90% (rare F+)
- 100% (F+)
Myasthenia Gravis: Differential Diagnosis

• From generalized MG
 - ALS: Asymmetric muscle weakness and atrophy
 - Other NMJ disorders
 • Lambert Eaton myasthenic syndrome
 • Congenital myasthenic syndrome
 • Neurotoxins
 - Botulism: Generalized limb weakness
 - Venoms: snakes, scorpions, spiders
 - Inflammatory demyelinating diseases
 • GBS: ascending limb weakness
 • Miller Fisher syndrome
 • Chronic
 - Inflammatory muscle disorders: Painful proximal symmetric limb weakness; no ocular involvement
 - Periodic paralysis: Intermittent generalized muscle weakness; no ocular involvement

JOAO 2004
Myasthenia Gravis: Differential Diagnosis

- **From Bulbar Myasthenia**
 - Brainstem stroke
 - Pseudobulbar palsy

- **From Ocular Myasthenia**
 - *MS*: UMN; bilateral internuclear ophthalmoplegia
 - Mitochondrial cytopathy (*chronic progressive external ophthalmoplegia*)
 - Oculopharyngeal muscular dystrophy
 - Thyroid ophthalmopathy

JOAO 2004
Myasthenia Gravis

- **Management**
 - Diagnosis
 - Searching for associated diseases
 - Treatments
 - Avoiding and treating precipitating factors
Myasthenia Gravis:

- Associated diseases
 - Thymoma
 - Nonthymus neoplasm in 3%
 - DM in 7%
 - Thyroid disease in 6%
 - Rheumatoid arthritis in fewer than 2%
 - Pernicious anemia, pancytopenia, thrombocytopenia and SLE in fewer than 1%
 - Polymyositis, dermatomyositis, psoriasis, scleroderma (BJA 2002)
Recommended laboratory tests or procedures

Magnetic resonance imaging or computed tomography of mediastinum
Tests for lupus erythematous: antinuclear antibody, rheumatoid factor, antithyroid antibodies
Thyroid-function tests
Tuberculin test
Chest radiography
Fasting blood glucose measurement
Pulmonary-function tests
Bone densitometry in older patients
Myasthenia Gravis: Treatment

• The goal is to achieve remission
 – Symptoms free and taking no medication
 • By increased neuromuscular transmission
 • Reduce autoimmunity

• Others: having a normal quality of life even if some signs remaining and cholinesterase inhibitors taking

JOAO 2004

Neurologic clinics 1994
Myasthenia Gravis: Treatment

• No single treatment is ideal for all patients
 – Each patient needs an individual plan
 – Treatment may have to be changed time to time

• Obtain the best response while keeping the risk and side effects as low as possible
Ocular MG

15% never spread out *(Neurologic clinics 1994)*
Spontaneous remission *(JOAO 2004)*
Good response to pyridostigmine

If spread out, in 2 y - thymectomy
If not response to pyridostigmine
Add prednisolone: 10-30 mg/d for 2-3 months or incrementing dose; after maximum benefit slow tapering
If not effective, getting along with dysfunction; maneuvers and simple mechanical devices used
Or high-dose daily prednisolone + azathioprine or even thymectomy
If ptosis is fixed; surgical shortening of the eyelid to be considered *(JOAO 2004; Neurologic clinics 1994)*

Harrison 2001
Generalized MG

No bulbar involvement: remission

Thymectomy: Indications

- Thymoma
- Those are medically stable and aged 60 years or younger (puberty) (Neurologic clinics 1994; NEJM 1994)

35% have clinical remission; 50%: improvement (Neurologic clinics 1994; NEJM 1994)

Clinical improvement in 6-12 m. after (JOAO 2004)

1-2 years after surgery, immunosuppressive therapy to be considered if functional limitations (Neurologic clinics 1994)

Establish diagnosis unequivocally (see Table 362-1)

Search for associated conditions (see Table 362-2)

- **Ocular only**
- **Generalized**
- **Crisis**

MRI of head (if positive, reassess)

Anticholinesterase (pyridostigmine)

- **Evaluate for thymectomy** (indications: thymoma or generalized MG; evaluate surgical risk, FVC)
 - **Good risk** (good FVC)
 - **Poor risk** (low FVC)

Plasmapheresis or intravenous Ig

If unsatisfactory

- **Thymectomy**

Immunosuppression

1. Prednisone (unless contraindicated): increase dose to improvement or 50 mg/d
2. Add second agent: (see text)
3. Switch prednisone gradually to alternate-day regimen
4. If improved, slowly taper of immunosuppressive agents
5. Maintain at minimum effective doses of all drugs (usually required indefinitely)

Harrison 2001
Myasthenia Gravis: Treatment

• Generalized MG with onset in childhood
 – More benign than in adult; less associated with thymoma, and remit spontaneously
 – ChE inhibitors only apply otherwise disabling signs exist, steroid will be recommended
 – Thymectomy if not respond to prednisolone
Myasthenia Gravis: Treatment

• Generalized MG with late-life onset
 – Less likely to improve after thymectomy
 – Surgery carries greater risk
 – Treatment with ChE inhibitors
 – Severe cases worth to use prednisolone and azathioprine
Myasthenic crisis

Sudden worsening of respiratory function ± profound muscle weakness

- Negative inspiratory force of less than -20 cmH₂O
- Tidal volume of less than 4mL/kg
- Force vital capacity < 15 mL/kg (normal 50-60 in female, 70 in male)

Neurologic emergency

Causes: concurrent infection, medications, drug withdrawal (JOAO 2004)

DDx from cholinergic crisis: clinical and tensilon test

Management

- Stop every medications
- Assisted ventilation
- Treating pff.
- If not improve
- IVIg or plasmapheresis (JOAO 2004)
Myasthenia Gravis: Treatment

- Acetylcholinesterase inhibitors
 - Symptomatic improvement for a period of time
 - Initial therapy
 - Onset in 30 mins.
 - Peak effect at 2 hrs.
 - Half life approximately 4 hrs.
 - Lower risks and side effects than others: abdominal cramping, n/v increased salivation, and diarrhea

NEJM 1994; Neurologic clinics 1997
Myasthenia Gravis: Treatment

• Acetylcholinesterase inhibitors
 – Benefit most patients but incomplete after weeks or months treatment; require further therapeutic measures
 – No fixed dosage schedule suits all patients
 – The need for ChE inhibitors varies from day-to-day and during the same day
 – A sustained-release preparation used only at bedtime

NEJM 1994; Neurologic clinics 1997
Myasthenia Gravis: Treatment

- **Acetylcholinesterase inhibitors**
 - Pyridostigmine bromide is used
 - **Starting with 30 mg every 4 to 6 hours; titrated depending on clinical symptoms and patient tolerability**
 - **Cholinergic crisis if too much of this medication (max. Dose = 450 mg/d)**
 - **Lowest amount with maximum benefit**
 - **30 minutes before eating for patients with oropharyngeal weakness**

60 mg pyridostigmine = 15 mg neostigmine
Dose im form (2 ml = 5 mg) = 1/30 of oral dose

Neurologic clinics 1997; JOAO 2004
Myasthenia Gravis: Treatment

- Immunosuppressive therapy
 - Indications
 - Not adequately controlled by anticholinesterase drugs and sufficiently distressing to outweigh the risks of possible side effects of immunosuppressive drugs in ocular MG
 - Severe but not ready to have surgery
 - Not improve after thymectomy: may delay 3 y after surgery
 - Crisis not respond to plasma exchange or IVIg
 - In inactive and burnt-out stage

NEJM 1994
Myasthenia Gravis: Treatment

• **Immunosuppressive therapy**
 – Steroid: reduce AchR-Ab titer
 • Most use
 • Typical dosage is 1 mg/kg daily as a single oral dose
Myasthenia Gravis: Treatment

• **Immunosuppressive therapy**

 – **Steroid:**

 • Start on a low dose and gradually titrate the dose up

 – 5 mg daily and increased by 5 mg every 4-7 days until clinical benefit achievement;

 – Remain on this dose for 2 mo.

 – Then, switch to alternate-day therapy

 – Once, the condition stable, taperd downward by 5 mg every month

 – Patients may relapse after tapered off

 – Most patients require long-term low-dose

JOAO 2004
Myasthenia Gravis: Treatment

• **Immunosuppressive therapy**
 - **Steroid:**
 - Have benefit in 6 to 8 weeks after initiation
 - Adverse effects: acne, bruising, cataracts, electrolyte imbalance, hirsutism, hyperglycemia, HT, avascular necrosis of the femoral head, obesity, osteoporosis, myopathy
 - **High-dose daily prednisolone (60-80 mg; 1-1.5 mg/kg/d)**
 - Rapid improvement
 - Institution in the first 2-3 weeks
 - Exacerbation of weakness managed by ChE-inhibitors or plasmapheresis

JOAO 2004
Myasthenia Gravis: Treatment

- **Immunosuppressive therapy**
 - **Azathioprine:**
 - Most use
 - To reduce adverse steroid effects
 - To whom steroids are contraindicated
 - Starting dose is 50 mg daily for the first week, then increased 50 mg every week
 - Titrating up to a maximum of 2-3 mg/kg/d in two or three divided doses

NEJM 1994; JOAO 2004
Myasthenia Gravis: Treatment

- **Immunosuppressive therapy**
 - **Azathioprine:**
 - Clinical benefit shown in 4-6 months or longer (max effect 12-24 mos.)
 - Once improvement; maintain as long as 4-6 mos.
 - Adverse effects: neutropenia, hepatotoxicity; increase risk of malignancy; idiosyncratic influenza-like reaction

NEJM 1994; JOAO 2004
Myasthenia Gravis: Treatment

- Plasmapheresis (plasma exchange) and IVIg: Indications
 - Severe MG and exacerbations
 - Preparing for thymectomy or post operative period
 - Covering period before immunosuppressive therapy becomes fully active
Myasthenia Gravis: Treatment

• Plasmapheresis (plasma exchange): double filtration plasma exchange and immunoadsorption plasmaphoresis
 - Undergoing a 2-week course of 5-6 exchanges (1 plasma volume = 40-50 ml/kg; 2-3 liters each)
 - Effective but transient in its response: Improvement in the third exchange and lasts 6-8 weeks
 - To remove the circulating immune complexes and AchR-Ab

NEJM 1994; Neurologic clinics 1997; JOAO 2004
Myasthenia Gravis: Treatment

- **Plasmapheresis (plasma exchange):**
 - Limitation: too small or fragile venous access
 - **Complications (catheters):** pneumothorax, bleeding, sepsis,
 - **Adverse effects:** hypotension, hypercoagulation, hypoalbuminemia, hypocalcemia, pulmonary embolism, arrhythmia, (frequent exchanges) anemia, low platelets

NEJM 1994; Neurologic clinics 1997; JOAO 2004
Myasthenia Gravis: Treatment

• IVIg therapy
 - Dose: 2 g/kg over 2-5 days
 - Clinical improvement in 1-2 weeks and lasts weeks to months

NEJM 1994; Neurologic clinics 1997; JOAO 2004
Myasthenia Gravis: Treatment

• IVIg: Side effect profile(some product contain IgA)
 – Allergic response: low grade fever, chills, myalgia
 – Diaphoresis, fluid overload, HT
 – Nausea, vomiting, rash, neutropenia
 – Headache, aseptic meningitis
 – Hyperviscosity: stroke, MI, ATN (most serious with compromised renal glomerular filtration; DM)

NEJM 1994; Neurologic clinics 1997; JOAO 2004
Myasthenia Gravis: Treatment

• IVIg: Side effect profile
 – Anaphylactic reaction: with IgA deficiency
 – Transmission with (very low)
 • Hepatitis
 • HIV

NEJM 1994; Neurologic clinics 1997; JOAO 2004
Myasthenia Gravis: Treatment

- **Surgical intervention**
 - Thymectomy
 - Acetylcholine-receptor antibody levels fall after thymectomy
 - **Mechanisms**
 - Eliminate a source of continued antigenic stimulation
 - Subside immune response
 - Correct a disturbance of immune regulation
Myasthenia Gravis: Treatment

- Surgical intervention
 - Thymectomy
 - Not recommended in
 - Patients with purely ocular MG
 - Childhood, some do not recommended because of less severity than in adults and common remission spontaneously
 - Late-onset

Neurologic clinics 1994; NEJM 1994
Effect of thymectomy on strength in myasthenia gravis

- Generalized: $P=0.06$
- Mild: ns
- Severe: $P<0.01$
- Female: $P=0.07$
- Male: $P=0.04$
- Young: ns
- Ocular: ns

Median percentage change in strength with thymectomy versus no thymectomy

Curr Opinion in Neurol 2001
Myasthenia Gravis: Treatment

• **Future treatment**
 - B-cell-directed approaches
 • B-cells produce pathogenic antibodies
 - T-cell-directed approaches
 • Pivotal role in autoimmune antibody response

NEJM 1994
Preparation for thymectomy
Preparation for thymectomy

- No emergency performance of thymectomy
- Preoperative preparation
 - Optimized strength and respiratory function
 - Avoided immunosuppressive agents (risk of infection)
 - If VC < 2 liters, plasmapheresis carried out
Preparation for thymectomy

- **Postoperative management**
 - May have weakness
 - Pain
 - Myasthenic crisis: ChE-Is withdrawal
 - Cholinergic crisis: disease improvement
 - May test with tensilon
 - ChE inhibitors may be reduced for a few days after thymectomy
 - Postoperative ChE medication given IV at a dose of $\frac{3}{4}$ of the preoperative requirement

NEJM 1994
Anaesthetic management in MG
Anaesthetic management in MG

- Local and regional anaesthesia should be employed
- GA requires meticulous pre and perioperative care
Anaesthetic management in MG

- Preoperative consideration: major elective surgical procedures
 - Admitted 48 hrs prior to surgery
 - Assessment and monitoring of respiratory (FVC) and bulbar function
 - Adjustment of ChE inhibitors and steroid if indicated
 - Chest physiotherapy started
 - Plasma exchange or IvIg if necessary

BJ A 2002
Anaesthetic management in MG

• Preoperative consideration: major elective surgical procedures
 – Sedative medications save if no respiratory compromise
 – Antimuscarinic agents helpful in reducing secretions
 – Steroid continued pre-operatively
 – Hydrocortisone administered on the day of surgery
 – ChE inhibitors withheld on the morning of surgery
Anaesthetic management in MG

- Induction and maintenance of anaesthesia
 - Routine monitoring
 - Supplement with invasive blood pressure measurement
 - Nasotracheal tube is preferred
 - Patients more sensitive to neuromuscular blocking agents
Anaesthetic management in MG

- Postoperative management
 - Nursed in a high dependency area and adequate analgesia provided: NSAID and parenteral opioids
 - ChE inhibitors restarted at a reduced dose in the immediate post-operative period and increasing if necessary
Seronegative MG
Seronegative MG

- Found in approximately 15% of patients with generalized MG
- Clinically indistinguishable from AchR-Ab-positive patients
- Be diagnosed using SFEMG
- 70% of SNMG patients have Ab to the muscle-specific receptor tyrosine kinase (MuSK)
Thymoma-associated MG

- Muscle antibodies predict the presence of thymoma
 - Ryanodine receptor Ab 70%
 - Titin Ab 95%
 - Both 70% 70%

Sens. Spec.

Curr Opin Neurol 2001
Late-onset MG
Late-onset MG

- Onset after the age of 50
- Male = female
- Most are nonthymoma
- More severe than early-onset MG
- Having circulating Ab to AchR but lower conc. than in early-onset MG
- Titin Ab associates with severity
- Difficulty in treatment

Archives of Neurol 1999
Late-onset MG

• Difficulty in treatment
 - Temporary response to ChE-inhibitors
 - Plasma exchange produces more complications
 - Thymectomy gives poorer results
 - Steroids give many complications
 - Treatment has to be tailored
MG and pregnancy
MG and pregnancy

- Pregnancy is associated with physiologic immunosuppression: depress leukocyte function
- Pregnancy aggravates MG
- So, clinical course unpredictable: rule of three
- One pregnancy not predict the course in subsequent pregnancies
- Exacerbation occur equally in all trimesters
- Therapeutic termination not demonstrate a consistent benefit in cases of first trimester exacerbation
MG and pregnancy

- Use minimal dosage of drugs
- ChE-inhibitors: increased uterine contraction
- Avoid other immunosuppressive drugs except steroid
- Normal delivery done
- No problems in breast feeding
- Transient neonatal myasthenia:
 - Found by 9-30%
 - Good response to ChE-inhibitors
 - Complete recovery in 2-4 mo
Myasthenic crisis
Myasthenic crisis

- Rarely at the initial presentation
- Known MG may reach a crisis
- Defined as sudden worsening of respiratory function and/or profound muscle weakness
- Being a neurologic emergency
- Causes: concurrent infection, medications, drug withdrawal
Myasthenic crisis

• **DDx from cholinergic crisis**
 - Abdominal pain, diarrhea, hypersecretion, pinpoint pupil
 - Negative or worse by tensilon test
 • Hold ChE-Is
 • Atropine 2 mg/hr
 - Tensilon test to consider the need of ChE-Is
Myasthenic crisis

• **Management**
 - Stop every medications
 - Assisted ventilation
 • Respiratory support required if
 - Negative inspiratory force of less than -20 cm H$_2$O
 - Tidal volume of less than 4mL/kg
 - Force vital capacity < 15 mL/kg (normal 50-60 [f], 70 [m])
 - Treating ppf.
 - Tensilon test to estimate ChE-Is requirement
 - If not improve
 • IVIg or plasmapheresis

JOAO 2004
<table>
<thead>
<tr>
<th>Condition</th>
<th>Symptoms and Characteristics</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital myasthenic syndromes</td>
<td>Rare; early onset; not autoimmune disorders</td>
<td>Sophisticated electrophysiologic and immuno-cytochemical tests required for diagnosis</td>
</tr>
<tr>
<td>Drug-induced myasthenia</td>
<td>Triggered autoimmune myasthenia</td>
<td>Recovery within weeks after drug withdrawal</td>
</tr>
<tr>
<td>Penicillamine</td>
<td>Weakness in normal persons; exacerbation of myasthenia</td>
<td>Recovery after drug withdrawal</td>
</tr>
<tr>
<td>Curare, procainamide, quinines,</td>
<td>Weakness; fatigue; areflexia; 60 percent of cases associated with oat-cell cancer</td>
<td>Incremental response on repetitive nerve stimulation; antibody to calcium channels present</td>
</tr>
<tr>
<td>aminoglycosides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lambert-Eaton syndrome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>Exacerbation of myasthenia; generalized weakness</td>
<td>Thyroid function abnormal</td>
</tr>
<tr>
<td>Graves' disease</td>
<td>Diplopia; exophthalmos</td>
<td>Thyroid-stimulating immunoglobulin present</td>
</tr>
<tr>
<td>Botulism</td>
<td>Generalized weakness; ophthalmoplegia</td>
<td>Incremental response on repetitive nerve stimulation; pupils are dilated</td>
</tr>
<tr>
<td>Progressive external ophthalmoplegia</td>
<td>Ptosis; diplopia; generalized weakness in some cases</td>
<td>Mitochondrial abnormalities</td>
</tr>
<tr>
<td>Intracranial mass compressing cranial</td>
<td>Ophthalmoplegia; cranial-nerve weakness</td>
<td>Abnormalities on computed tomography or magnetic resonance imaging</td>
</tr>
</tbody>
</table>
Differential diagnosis of myasthenia gravis

Generalised myasthenia
Other neuromuscular junction disorders:
 Lambert-Eaton myasthenic syndrome
 Congenital myasthenic syndromes
 Neurotoxins
 Botulism
 Venoms (snakes, scorpions, spiders)
Idiopathic inflammatory demyelinating polyradiculoneuropathies
 Acute (Guillain-Barré)-motor type
 Miller Fisher syndrome
 Chronic
 Many myopathies (idiopathic inflammatory, metabolic, dystrophies [rarely])
Bulbar myasthenia
 Brain stem stroke
 Motor-neurone disease (pseudobulbar palsy)
Ocular myasthenia
 Mitochondrial cytopathy (chronic progressive external ophthalmoplegia)
 Oculopharyngeal muscular dystrophy
 Thyroid ophthalmopathy
 Other causes of ptosis eg, contact-lens syndrome
 Brain-stem lesions
Myasthenia Gravis: Etiology

- **Immunopathogenesis**
 - MG is due to antibody-mediated processes
 - Ab is present
 - Ab interacts with the target antigen, acetylcholine receptor
 - Passive transfer reproduces disease feature
 - Immunization with the antigen produces a model disease
 - Reduction of antibody levels ameliorates the disease
Associated disorders

Disorders of the thymus: thymoma, hyperplasia
Other autoimmune disorders: thyroiditis, Graves’ disease, rheumatoid arthritis, lupus erythematosus, skin disorders, family history of autoimmune disorder
Disorders or circumstances that may exacerbate myasthenia gravis: hyperthyroidism or hypothyroidism, occult infection, medical treatment for other conditions (aminoglycoside antibiotics, quinine, antiarrhythmic agents)
Disorders that may interfere with therapy: tuberculosis, diabetes, peptic ulcer, gastrointestinal bleeding, renal disease, hypertension, asthma, osteoporosis
Myasthenia Gravis: Investigation

- For associated diseases
 - Autoimmune thyroiditis
 - Grave’s disease
 - SLE
 - CXR
 - CT chest scan: may miss small thymoma nodules

- Rule out genetic MG, Lambert-Eaton myasthenic syndrome
Myasthenia Gravis: Treatment

• Ocular MG
 - Good response to pyridostigmine
 - Starting with 30 mg every 4 to 6 hours
 - Titrated depending on clinical symptoms and patient tolerability
 - Adverse effects: abdominal cramping, increased salivation, nausea and diarrhea
 - Lowest amount, maximum benefit
 - Usually spontaneous remission
Myasthenia Gravis: Treatment

• Ocular MG
 - If spread out, will occur in 1-2 years after onset
 - So, closed follow up in the first 2 years is necessary to detect weakness early - thymectomy is recommended
Myasthenia Gravis: Treatment

- **Immunosuppressive therapy**
 - **Cyclosporine**
 - Inhibits T-cell activation
 - For failure to respond to combination therapy with prednisolone and azathioprine or intolerability of azathioprine
 - Starting dose: 25 mg twice daily
 - Titrating up to 3-6 mg/kg/d

NEJM 1994; JOAO 2004
Myasthenia Gravis: Treatment

- **Immunosuppressive therapy**
 - **Cyclosporine**
 - Combination therapy is more efficacious; reduced dosage and fewer adverse effects
 - Time to onset of effect: 2-12 wk
 - Time to maximal effect: 3-6 mo
 - Adverse effects: nephrotoxicity, HT

References:

NEJM 1994; J OAO 2004
Myasthenia Gravis: Treatment

- **Immunosuppressive therapy**
 - *Cyclophosphamide*
 - Used only others failed or not tolerated
 - **Starting dose:** 25 mg daily
 - Gradually increased up to 2-5 mg/kg/d
 - **Adverse effect:** hemorrhagic cystitis
Myasthenia Gravis: Treatment

- **Immunosuppressive therapy**
 - **Mycophenolate Mofetil**
 - Novel agent, benefit in transplantation medicine
 - Starting at 250 mg twice daily
 - Standard daily dosage: 1-2 g.
 - CBC checked every week for the first month; every two weeks for the next 6-8 weeks; and monthly thereafter
<table>
<thead>
<tr>
<th>Drug</th>
<th>Usual Adult Dose</th>
<th>Time to Onset of Effect</th>
<th>Time to Maximal Effect</th>
<th>Variables to Monitor Drug Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prednisone</td>
<td>15–20 mg/day gradually increasing to 60 mg/day and gradually changed to every other day</td>
<td>2–3 wk</td>
<td>3–6 mo</td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blood pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blood glucose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Electrolytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ophthalmic changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bone density</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24-hr urinary calcium</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>2–3 mg/kg/day (total dose, 100–250 mg/day)</td>
<td>3–12 mo</td>
<td>1–2 yr</td>
<td>White-cell count (<3500/mm³)*</td>
</tr>
<tr>
<td>(Imuran)</td>
<td></td>
<td></td>
<td></td>
<td>Differential count (<1000 lymphocytes/mm³)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean corpuscular volume (>100 μm³)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Platelets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Liver function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blood pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Serum creatinine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blood urea nitrogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trough plasma cyclosporine level</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>5 mg/kg/day given in 2 divided doses (total dose, 125–200 mg twice daily)</td>
<td>2–12 wk</td>
<td>3–6 mo</td>
<td></td>
</tr>
</tbody>
</table>

*Values in parentheses are desirable levels.
Myasthenia Gravis: Treatment

• Generalized MG with onset in adult life
 – Mild: no symptoms related to breathing, coughing and swallowing
 • ChE inhibitors
 • If optimal dosage, thymectomy to be considered
 • Or additional prednisolone, if no remission in 1 year - thymectomy
 – Balbar involvement
 • ChE inhibitors + high dose prednisolone
 • Thymectomy to be considered
Myasthenia Gravis: Treatment

• **Generalized MG**
 – Combination with pyridostigmine and prednisolone
 • Starting with low dose
 • Starting with high dose: 1-1.5 mg/kg/d
 – Patients be worse
 – Should be admitted for 2 weeks
 – Clinical benefit in 1-2 months afterward
 – Adverse effects: acne, bruising, cataracts, electrolyte imbalance, hirsutism, hyperglycemia, HT, avascular necrosis of the femoral head, obesity, osteoporosis, myopathy

JOAO 2004
Myasthenia Gravis: Treatment

- Generalized MG with onset in childhood
 - Distinguishing acquired autoimmune MG from genetic MG – not respond to immunotherapy
 - Seronegative in acquired MG possible
 - Positive treatment response with plasma exchange, IvIg is autoimmune disease; but negative not excluded
 - More benign than in adult; less associated with thymoma, and remit spontaneously
 - ChE inhibitors only apply otherwise disabling signs exist, steroid will be recommended
 - Thymectomy if not respond to prednisolone

Neurologic clinics 1994
Myasthenia Gravis: Treatment

• Generalized MG
 – To reduce adverse steroid effects
 – Add with or switch to azathioprine
Myasthenia Gravis: Treatment

• **Ocular MG**

 - If not good response to pyridostigmine: not lead to normal social and working life

 • Add low dose prednisolone: 10-30 mg/d for 2-3 months or incrementing dose; after maximum benefit slow tapering

 • If not effective, getting along with dysfunction; maneuvers and simple mechanical devices used

 • Or high-dose daily prednisolone with/without azathioprine or even thymectomy

 • If ptosis is fixed; surgical shortening of the eyelid to be considered

JOAO 2004; Neurologic clinics 1994
Myasthenia Gravis: Pathophysiology

Diagram showing the involvement of acetylcholine receptors, MHC II, CD4+, costimulatory signals, T-cell receptor, B cells, and antibodies in the pathophysiology of Myasthenia Gravis.
Myasthenia Gravis: Pathophysiology

- Serum concentration of acetylcholine-receptor antibody not correlate with the clinical severity
- Degree of reduction of acetylcholine receptors correlate with the severity

NEJM 1997
Myasthenia Gravis: Pathophysiology

• Immunopathogenesis
 – Antibody negative MG
 • Found in 10-20%
 • Causes:
 – Too low an affinity for detection in the soluble assay system
 – Antibody may be directed at epitopes not present in the soluble acetylcholine-receptor extract

NEJM 1997
Medications induce or exacerbate MG

- **Anti-infective Agents**
 - Aminoglycosides
 - Kanamycin sulfate
 - Ampicillin sodium
 - Erythromycin
 - Ciprofloxacin HCL
 - Imipenem
 - Pyrantel
Medications induce or exacerbate MG

- **Cardiovascular Agents**
 - Propanolol HCL
 - Acebutolol HCL
 - Oxyprenolol HCL
 - Practolol
 - Timolol maleate (β blocker)
 - Quinidine (anti-arrhythmic)
 - Procainamide HCL (anti-arrhythmic)
 - Propafenone HCL (anti-arrhythmic)
Medications induce or exacerbate MG

- **Other Agents**
 - Chloroquine
 - Corticosteroids
 - D-penicillamine
 - Interferon α
 - Mydriatics
 - Phenytoin sodium
 - Trihexyphenidyl HCL (artane)
 - Trimethadione
 - Verapamil HCL
Pre ice test in ocular MG.

Post ice test positive in ocular MG.